Preparations are well under way for the 2017 IFEAT Conference to be held in Athens, Greece at the InterContinental Athenaeum Hotel from 24th to 28th September. I look forward to welcoming members and their partners to this beautiful, historical city with strong global links deriving from its shipping, finance, commerce, arts, culture and tourism sectors. This year, it will be a celebratory conference, as we mark 40 years since IFEAT’s inception in Kyoto in 1977; the theme will be “Celebrating 40 years of IFEAT”.

There is much to celebrate, as our industry has flourished and IFEAT activities continue to expand. As part of the celebrations we shall be looking at “fragrances in antiquity”. The glorious era of Ancient Athens stands roughly halfway in the course of the 40 centuries of documented perfumery. With the unique smells of Greek origin such as labdanum or mastic, our conference will pay special tribute to the on-going discoveries around the fascinating richness of these ancient scents.

Following the success of last year’s Dubai Conference, the order of events at the Athens Conference will be the same as 2016. There will be two days of a formal conference speaker programme with presentations on topical issues for the global essential oils and aroma chemicals trade (Monday 25th and Tuesday 26th September). This will be followed by a two-day Trade Exhibition on Wednesday 27th and Thursday 28th September, as well as private meetings and networking between members. Workshops are being organised for these last two days including the ICATS Intermediate Perfumery Workshop led by Joanna Norman and Special Topics in Flavours and Flavourings led by Michael Zviely. More information about these ticket-only courses can be found on the IFEAT website at www.ifeat.org.

The Welcome Reception will be held on Sunday 24th September prior to the start of the conference. The annual IFEAT Dinner will be held at The Zappeion Hall on Tuesday 26th September with the Closing Banquet being held at the exquisite beach front Balux Prive on Thursday 28th September.

I am delighted to have a very energetic and competent new IFEAT secretariat (see page 2) working on this year’s IFEAT Conference. I am also very grateful to my organising committee which consists of long-standing members of the IFEAT Executive Committee, who already have form with regard to the organisation of spectacular IFEAT events. Thank you for your time and unwavering support: Kim Bleimann, Michael G Boudjouk, Antonella Corleone, Hussein Fakhry, Csaba Fodor, Jens-Achim Protzen, Ravi Sanganeria, Michael Torre and Stephen Pisano.

More information will be forthcoming soon on the IFEAT website. Please do contact the secretariat if you have any questions with regard to the 2017 IFEAT Athens Conference.

Dominique Roques
Conference Chairman
Two new members of staff have joined the IFEAT team. Tina Carne takes on the combined role of Conference Programme Coordinator and Editor of IFEATWORLD and Ronit Meier is IFEAT’s new bookkeeper. The team continues to ensure the efficient and smooth running of IFEAT, as well as the organisation of the annual conference, the study tours and IFEATWORLD.

The new staff join Salma Rossell who started her role as Events Manager with IFEAT in November 2015. Salma is relocating to New Zealand this year so will sadly be leaving IFEAT in a few months. The team will continue to be supported by independent contractor Louise Kaper who provides services to IFEAT, primarily through the Executive Committee Chairman and Executive Committee.

TINA CARNE
Tina is IFEAT’s Conference Programme Coordinator and IFEATWORLD editor. She ran her own website design and marketing communications business for 15 years and more recently, was head of a film and media company.

Tina attended the IFEAT 1998 London Conference in her role as Marketing & PR Officer at the University of Plymouth, where she worked with Dr Tony Curtis to market the BA Business of Perfumery course and later the IFEAT Diploma programme. She has also been to IFEAT conferences in Marrakech, Barcelona and Singapore and is a familiar face to many on the Executive Committee. In 1994, when her children were in primary school, Tina studied for a BA (Hons) degree in Public Relations with Applied Information Technology, specialising in Artificial Intelligence. She is also working with the Membership Committee on the development of IFEAT’s website.

Tina is also a Clinical Hypnotherapist and in her spare time she acts in amateur and professional theatre productions. When time permits, she also plays guitar in a band.

RONIT MEIER
Ronit joined IFEAT’s London based team in January this year as the financial coordinator and is responsible for all financial transactions and the bookkeeping.

She brings a wealth of experience to IFEAT, with over 12 years of accounting knowledge gained in a wide range of sectors, including most recently the property industry. Ronit is looking forward to working for an international organisation with a wide global reach and IFEAT will certainly benefit from her knowledge and skills.

Ronit has two children, both girls, who attend primary school in West London close to their family home. Her hobbies include cooking, baking and make-up.

SARAH GREENWOOD
Sarah will also join the IFEAT team in May for a second term as Events Manager, taking over from Salma. She previously worked for IFAI from 2004 to 2009 and organised the conferences in Lisbon, Cadiz, Cape Town, Budapest and Montreal as well as the inaugural Study Tours in Sri Lanka and Egypt. Sarah has spent the last eight years working for an events company and another membership association, organising its large UK annual conference and exhibition as well as its first overseas events in New York and Hong Kong.

Sarah has a passion for all things vintage and loves to buy and sell clothes, accessories and homewares at vintage sales in her local area.

Antonella Corleone, Chairman of IFEAT’s Executive Committee, commented: “The new team will be able to provide better services to all members, assist them more efficiently and help the Executive Committee to make IFEAT stronger in the current demanding world of the industry. The team will also help to ensure that IFEAT will be able to follow new projects more closely and make its interest and influence wider. They will also ensure the smooth running of our annual conference. I am confident that together the new staff will become the precious pillars of our beloved Federation.”

The 47th International Symposium on Essential Oils (ISEO), held in Nice, France on 11-14 September 2016 attracted more than 280 participants from 38 countries. As in previous years, IFEAT sponsored 20 young scientists to attend this event (see December 2016 issue of IFEATWORLD). A full list of participants and all the abstracts of presentations given can be downloaded from the ISEO 2016 official website: http://unicec.frei colloques/iseo

Dr Nicolas Baldovini, President of the ISEO 2016 Organising Committee, in his report from the Nice event, said it had been “quantitatively and qualitatively very positive.” Plenary lectures gave new perspectives on research in essential oils, including a presentation by Dr Bellonot. Director of ITEPMAL on promising applications of essential oils in agriculture. Dr Blérot, from the R & D department at IR obtained the significant impact of all stages of the cultivation and the harvesting of roses to obtain high yields of essential oil. Dr Schalk from Firmenich presented the possibilities of biotechnology to produce terpenoids and demonstrated the efficiency of this approach for the production of several fragrant ingredients in the marketing phase such as: Clarowood®, sclareol or sandalwood essential oil derivatives.

The infinite richness and variety of essential oils means that highly technological equipment is often required to identify their components. Professors Tranchida and Ferreira illustrated this. Professor Ferreira

by revisiting the methodologies associating chemical analysis and sensory perception, while Professor Tranchida highlighted the contribution of low-flow modulation to comprehensive two-dimensional gas chromatography to obtain ultra-high resolution separations. These new technological offerings were well illustrated in papers on the analysis of pesticides in essential oils (Dr Céline Roy - ERINI), as well as the expanded list of 61 allergens (Dr Jane Cooper - Waters, Dr Frank David - RIC, Dr Emilie Belhassen - Firmenich, Dr Thomas Dutriéz - Givaudan).

Regulation is still an essential element in the field of aromas and fragrances. Matthias Vey gave an enlightening presentation on the progress of FRA’s work in assessing the allergic potential of the enlarged list of compounds covered by the European Commission. The paper by Paul Thomas, CEO of Enactus, also highlighted an innovative method for assessing the environmental risk of a complex natural substance.

ISEO 2016 abstracts available

The 48th ISEO will be held on 10-13 September, 2017 in the beautiful and historical city of Pécs in south-west Hungary.

IFEAT will again be sponsoring a number of talented young students to attend this year’s event.
For fifty-six years the Expert Panel of the Flavour and Extract Manufacturers Association (FEMA) has served as the primary independent body evaluating the safety of flavour ingredients. This Expert Panel evaluates flavour materials to determine if they can be considered generally recognised as safe (GRAS) for their intended use as flavour ingredients, consistent with the 1958 Food Additives Amendment to the US Federal Food, Drug, and Cosmetic Act. Currently, the FEMA Expert Panel has determined that over 2,800 flavour materials have met the criteria for GRAS status under conditions of intended use as flavour ingredients.

Since its inception the FEMA GRAS programme has continued, with new materials being reviewed and added to the list, as well as updated re-evaluations of materials that already had GRAS status. In addition to conducting reviews for chemically defined individual ingredients, the Expert Panel has also regularly evaluated and updated the scientific approaches that are used in its review processes.

In 2004 the Expert Panel published its updated process specifically for the safety evaluation of Natural Flavour Complexes (NFCs). Natural Flavour Complexes are mixtures of naturally-occurring chemicals which have been obtained by isolating botanical materials to various physical separation techniques such as extraction or distillation. The resulting products are example essential oils represent the aroma components of these natural products. The FEMA Expert Panel’s approach to evaluating the safety of a natural flavour complex is similar to that outlined by the Joint WHO/IAEA/EFSA Committee on Food Additives (JECFA) as published in their technical report series following the 2003 and 2004 meetings. It begins with an understanding of the chemical composition of each commercial product, followed by a review of the history of dietary use. The NFCs are then grouped into classes having similar structural similarity and a toxicological review process. If the available data supports the safety in use of the NFC its GRAS status is confirmed.

“To may allow for critical decisions to be made about future usage patterns for some NFCs”

In 2014 flavour industry discussions began to focus on the need for a systematic GRAS re-review programme that would concentrate solely on NFCs. A key driver in this discussion was the International Federation of Essential Oils and Aroma Trades (IFEA), whose major focus is on NFCs. IFEAT was joined by FEMA and IOR (the International Organisation of the Flavour Industry) and within the next year agreement was reached for a robust scientific review programme for these materials. By this agreement project support is provided by FEMA and IOR. IOR staff take the lead in driving the programme, working collaboratively with IFEAT scientific support and with FEMA scientific staff who assemble the available data for the actual GRAS reviews by the Expert Panel.

This programme makes specific use of the so-called “Naturals Paradigm” represented in the Panel’s 2004 publication. The basic premise of the FEMA Expert Panel’s Naturals Paradigm is the evaluation of an essential oil based on its chemical composition. By organizing the chemical constituents into congeners of similar chemical and toxicological properties, the risk posed by each congener group can be considered separately. Essential oils are chemical mixtures, and for most essential oils, the analytical technology exists so that their composition can be accurately determined and evaluated for safety. This approach is scientifically based, transparent and comprehensive to assure that the commercially relevant NFCs destined for consumer exposure are the materials evaluated. It also allows for evaluation of materials such as those derived from botanicals that may display variability due to source country and harvesting time and conditions. During the course of the evaluation, the Panel also reviews and considers the results of toxicological testing conducted on the NFC itself, which can also be very useful despite the potential variability.

The current FEMA GRAS list contains about 350 NFCs, and it has been determined that 250 of these would be appropriate for GRAS reaffirmation. The 100 or so materials that would not be included in this review are represented as single species leaves and gums - which are already GRAS - as well as newer NFCs that were reviewed when the Naturals Paradigm was developed in 2004. Using the results of global poundage surveys that are conducted regularly by FEMA to track flavour material use, the NFCs are prioritised for re-evaluation, with the highest use materials being in the highest priority grouping.

Materials having known biological activity also receive high priority attention. A request for compositional data is sent to the entire industry for each group of materials; the scope of this request maximises the opportunity for assembling a robust data package. Then the so-called congener groupings of the NFCs are created based on materials having individual components of similar structural classes. FEMA scientific staff next assemble all available safety data for these groups and together with composition data, all information is provided to the Expert Panel for its review. If the Panel determines that additional information is needed to complete its review, FEMA scientific staff will organise the necessary testing or information gathering. Finally, the results of the Panel review are published in an appropriate peer-reviewed journal.

The re-affirmation programme is planned to complete the review of about 50 materials per year, with a five year timeline for overall project completion. A total of 49 materials are scheduled to have Panel review completed by the first quarter of 2018, with two more groups following that in subsequent years. The first group of materials (49 total) to be reviewed was the citrus products, broken down as follows: Lemon (6); Orange, high volume (13); Orange, moderate volume (14); Lime (6); Grapefruit (5); and Peppermint (5). As of this writing the Panel review of these has been completed and a document for publication is in the final stages of preparation.

The second group review is in progress, with the call for data being completed on the data being prepared for review by the Panel. There are five groups of materials (total 44) being addressed: Mint (13); Cinnamon (8); Alkylbenzene-containing oils (including Basil Oil, Nutmeg Oil, Anise Oil, etc.); (14); Eucalyptus (7) and two unique materials, Walnut Hull Extract and Haw Bark Extract. A draft document for publication is expected in mid-2017.

Finally, a third call for data has just been issued for a disparate group of some 56 NFC materials, all of them FEMA GRAS. The same pattern of data collection, review and publication will be followed with the latter scheduled for mid-2018.

The outcome of this programme will clearly strengthen the safety support for both the natural products themselves but also for those consumer products in which they are contained. It may also allow for critical decisions to be made about future usage patterns for some NFCs. For example, there are some very low usage materials with gaps in the supporting data industry members will have to decide whether to invest in generating additional data. Likewise, it may be possible that for some high usage materials, additional data points are recommended to supplement the data support dossiers that already exist.

With the conclusion of this programme, those naturally occurring food flavour materials that have been in such long use will have all undergone the same rigorous safety review, according to updated processes for scrutiny as the synthetic flavour materials that must have such scrutiny for inclusion in the FEMA GRAS list. This is a major step for the flavour industry and a testimony to its commitment to the assurance of safety of its materials.

* The Naturals Paradigm is a tool that is specifically used for the safety evaluation of NFCs. This approach prioritises constituent materials according to their chemical structure and intake, for subsequent toxicological evaluation.

All text has spent his entire career in the personal care products industry including 25 years at Revlon and Avon and 17 years at Ferrernach. Actively involved in FEMA, PMA, RRA and IOR for many years he served as chair of a number of technical committees for the trade associations, as well as President of PMA for a three year term. Since his retirement eight years ago he has maintained ties to the flavour and fragrance industry through consulting and is currently serving FEMA as Scientific Advisor for the naturals GRAS re-affirmation programme.
TURPENTINE

Gum (not CST or Wood Turpentine)

Turpentine is the volatile oil obtained from pine trees by three manufacturing processes which yield respectively gum turpentine, crude sulphate turpentine (CST) and wooden turpentine. Turpentine obtained by distillation from the oleoresin collected via the tapping of living trees of the genus Pinus is known as gum turpentine. This distinguishes it from turpentine recovered as a by-product from chemical pulping of pine wood in the pulp and paper process, which is referred to as sulphate turpentine. Wood turpentine is extracted from aged pine stumps. Due to the characteristics of the production areas, we are going to focus on gum turpentine for this socio-economic impact study.

Gum turpentine is mainly used as a solvent for paints and in numerous household products including shoe polish and furniture care products. In folk medicine, it was used as a chest rub to treat colds and flu and is still used as an ingredient in contemporary pharmaceutical products of that kind today. This use is limited now due to the sensitising properties of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides should not exceed 10 millimoles per litre, as this can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem. Content of peroxides which are easily formed when the product is stored in contact with air. The addition of antioxidants can solve the problem.

Impact category: High impact, many people involved.

Location of processing
Over 800 GR/GT. Distillation plants are spread over the production area (Zhang, 2012).

Volumes
In 2015, the Chinese output of GT was approximately 100,000 metric tonnes of which less than 3,000 metric tonnes were exported. Regarding GR, the output was around 950,000 metric tonnes of which approximately 90,000 metric tonnes were exported. China’s output was 75% of the total followed by South America (14%) and growing in Indonesia (1%). Minor producing areas are found around the Mediterranean (1%) and Central America (1%).

It is interesting to note that due to the global economic slowdown, farmers have commenced pine resin collection again in countries where it was no longer considered to be economically feasible, as illustrated by Spain’s increased tapping activities in recent years.

In 2016, the Chinese output of GT is estimated to be 90,000 metric tonnes and for GR, the estimated output will be between 500,000-550,000 metric tonnes.

The GT produced in China is one of the most important raw materials supporting the sustainable development of the aroma chemicals industry (Chen Dong Xia, 2007; Wimberley, 2008; Zheng, 2012). Gum turpentine, like crude sulphate turpentine, provides mankind with alpha- and beta-pinenes, which are key raw materials for various industries including fragrances, flavours and resins. The chemical uniqueness of pinenes enables such industries to produce reliable perfumes, renewable flavours and renewable resins from pine trees.

The amount of pinenes from both main types of turpentine (GT and CST) exceed 2,000,000 metric tonnes; therefore turpentine is one of our industry’s highest contributors to socio-economic welfare.

Turpentine production in Brazil is estimated to be 21,000 MT/year. Indonesia also produces about 13,500 MT per year in a cultivated area of 87,000 ha of which only 35% is tapped. Approx. 24,000 people are involved in the industry according to Perhutani, the state owned company.

CONCLUSION
Gum turpentine is a key raw material for the aroma chemicals industry. In China, around 400,000 people rely on the GR/GT industry for a living, including farmers, crude gum collectors, dealers and gum resin processors. A large number of people are also involved in production in other countries around the world including Brazil and Indonesia.

REFERENCES:
- ISO 21398:2004 Oil of gum turpentine, Chinese (extract from Pinus massoniana Lamb.).
By Peter Greenhalgh, Consultant to IFEAT

This is the second instalment of Peter Greenhalgh’s “History of IFEAT” series, which is being prepared to celebrate IFEAT’s fortieth anniversary this year. It follows on from his article “The Founding of IFEAT”, published in the December 2016 issue of IFEATWORLD.

MEMBERSHIP GRADUALLY INCREASES

A recruitment drive began from the very beginning, and the annual $100 membership fee agreed in Kyoto in 1977 was soon lowered to $60 to encourage membership. Both individual companies and associations were encouraged to join as well as industry stakeholders; producers, shippers, exporters, importers, brokers and users. Concerns were expressed over end-users becoming members and the voting structure, especially for associations. Membership numbers were not high (53 companies by late 1979) and there was resistance to the concept of IFEAT from some larger companies in our industry.

Nevertheless, the EC was undaunted and through dogged determination and effort, gradually built up IFEAT’s reputation and membership.

FORMATION OF IFEAT COMMITTEES

Various committees were formed, most of which are still in existence today, e.g. Finance, Membership, Education, Technical (now Science), Planning (now Strategic). In addition, there was the Contract Committee, aiming to establish an essential oil trading contract. Despite several reincarnations, the “vexed question” of an IFEAT contract governing the trading of essential oils and other aromatic materials never resolved. There was too much opposition to a general contract from some quarters. A Trade Relations Committee was established in which Richard Pisano (chair), Dr Brud Ognyanov and Klaus-Dieter Prozzen undertook the important task of liaising with both international (especially IFRA and IOFI) and national organisations involved in the F&F sector.

TECHNICAL INFORMATION AND DATA

An early IFEAT member was the Tropical Products Institute (TPI), a UK Government scientific organisation based in London. This organisation dates back to the late 19th century and had been intimately involved in the industry for many decades. At that time, it had by far the world’s best and most comprehensive library on essential oils, and it made this available to IFEAT members along with its information service. Together with the EC, both as a provider of technical expertise and later as Conference Programme Coordinator, TPI staff often gave papers at IFEAT Conferences and provided considerable technical support to IFEAT activities.

“Dr Clinton Green was head of TPI’s ‘Essential Oils, Spices, gums and Resins’ Section and was closely involved in IFEAT’s development, both as a provider of technical expertise and later as Conference Programme Coordinator. TPI staff often gave papers at IFEAT Conferences and provided considerable technical support to IFEAT activities.”

The founders would no doubt be amazed at how successfully IFEAT has developed

EARLY IFEAT CONFERENCES

Over the past 40 years, conferences have taken pride of place in IFEAT’s activities. In the early years, IFEAT held a conference every two years, while the third year was devoted to the International Congress of Essential Oils (ICEO), later becoming the International Congress of Essential Oils, Flavours and Fragrances (ICEOFF). The first triennial ICEO was held in Reggio Calabria, Italy in 1956 and these congresses were much larger affairs than the early IFEAT Conferences. They were dominated by scientific/technical papers rather than commercially-oriented papers. In establishing IFEAT Conferences, the EC had a number of objectives. Increasingly the aromatic ingredients industry was a dynamic and rapidly evolving sector and conferences needed to reflect these changes. Annual meetings were much preferred to triennial ones; conferences needed to be more commercially orientated; by attending, delegates would be able to update themselves on the many changes taking place, not only by listening to presentations but also by putting questions to experts on subjects such as legislation, which was becoming a major issue for the trade. This was particularly the case from 1992 when the 12 countries in the European Community (later the European Union) intended to be regulated as one market. The number of regulations and laws expanded alongside the expansion of membership of the EU, which by 2017 had reached 27. Whether EU membership numbers continue to expand or decline remains to be seen.

The table lists IFEAT Conferences held between 1979 and 1996 including the cancelled 1981 Conference following the assassination of President Sadat. Some delegates had already arrived in Egypt prior to his assassination. The first IFEAT conference in 1977 was in London, UK, and predominantly London, was a major service. Today it is often forgotten that the IFEAT members along with its information service, Travelling Lecturers and Education initiatives, an irregular newsletter, remained to be seen!

EDUCATION IS AN EARLY IFEAT OBJECTIVE

Support for education was an early IFEAT initiative, with the 1980 Cannes Congress seeing IFEAT launch a David William’s Perfumery Correspondence Course, while seeing IFEAT launch an initiative, with the 1980 Cannes Congress seeing IFEAT launch a David William’s Perfumery Correspondence Course, while the 1980 Cannes Congress saw the first IFEAT Medal Lecture by Dr. Ron Neal.

Ron Neal’s “It was a very good Congress because we started out with not too high hopes, but in the end it proved to be very unusual in my experience of these congresses. It had a very high top rate participation from abroad.”

The founders would no doubt be amazed at how successfully IFEAT has developed today virtually every country and sector involved in the global industry is represented in the membership, and the annual IFEAT Conference has become a major item on the F&F industry calendar.
BERJÉ
WHERE THE WORLD COMES TO ITS SENSES

67 YEARS
3 GENERATIONS
1 AMBITION

Berjé has strived for excellence as a supplier of Essential Oils, and Aromatic Chemicals since our early days in New York City. In those six decades Berjé has built an inventory of over 3000 ingredients that covers the esoteric to the everyday. Rigorous QC standards, comprehensive traceability programs, and our recent SQF certification have established Berjé as a top tier distributor.

With that foundation Berjé is breaking new ground on improving the industry's standard of service. Coupled with Berjé Trakia, a European rose and lavender production facility, our global network of partners gives us the reach to sell in over sixty countries on six continents. As we further our commitment to promoting environmentally stable solutions, Berjé guarantees the quality of the past and the good sustainable business practices of the future.

NEW IFEAT MEMBERS
Below is a list of new IFEAT members who had joined by 16th February 2017:

BERJÉ TRAKIA

Nanjing Unvis International Development Co. Ltd
Room 3311
Huai International Mansion
No. 67 Zhuying Road
Nanjing, 32 10008
CHINA
Contact: Mr Jack Zhang
Email: jack@unvisint.com
Web: www.unvisint.com/index.asp

Zhuhai Pak Li Heung Flavours and Fragrances Ltd
RP1701 Sonyu International
No. 8 Cuspin North Road
Xingzhou Zhuhai, 44
CHINA
Contact: Mr Kajun Wang
Email: samwangkj@zhuhaiplh.com
Web: www.zhuhaiplh.com

Occa Inc
1040 chemin du Roy
Québec, G2A 1W0
CANADA
Contact: Mrs Ginette Davin
Email: ginette.davin@occainc.com
Web: www.occainc.com/en

Tamilnadu Oils and Naturals
5/10, Bushcroft Apts
Oils and Naturals
Bangalore, Karnataka 560025
INDIA
Contact: Ms Varsha Shivashankar
Email: varsha@meon.in
Web: www.meon.in

MCAT GmbH
Raffystrasse 35
Donauwessingen 78166
GERMANY
Contact: Mrs Nives Gnaej
Email: nives.gnaej@mcat.de
Web: www.mcat.de/cms/index.php/lang=en

AGROCON Industria e Serviços
Ltda
Rodovia BR 174, km 15, Ramal da Esperança,
202 Claudio Mosquita
Manaus, Amazonas 6904992
BRAZIL
Contact: Agumar Simes
Email: agumar@agrocon.com.br
Web: www.agrocon.com.br

Mysore Essential Oils and Naturals
51/16, Busicraft Apts
Narasipur Road, Richmond Town
Bangalore, Karnataka 560025
INDIA
Contact: Mr Varsha Shivashankar
Email: varsha@meon.in
Web: www.meon.in

Immortelle Group d.o.o.
Radojica bb. 88363.
Republika Srpska
BOSNIA AND HERZEGOVINA
Contact: Mr Djuro Jukic
Email: d@immortelle.com
Web: www.immortelle.com
Alain Frix

A full itinerary is now in place for this year’s IFEAT Study Tour. Participants will travel to Bulgaria to learn about the country’s rose industry as well as other domestically produced essential oils such as lavender and melissa oils. The tour has been timed to take place during the major rose harvesting season and participants will visit farms in the renowned “Rose Valley” where picking will be taking place. They will also visit rose oil producers, processors and exporters and meet leading experts from the Bulgarian essential oil industry.

Bulgaria is responsible for 60% of the world’s production of rose oil. “Bulgaria is responsible for 60% of the world’s production of rose oil.”

On Sunday 28th May, the trip will start in Sofia, the capital of Bulgaria. A tram tour, with cocktails on board, has been organised for the first evening, to be followed by a Welcome Dinner, with panoramic views of Sofia. On Monday 29th May, participants will travel by coach to Plovdiv for a visit to Rosa Impex Company, which is one of the first private Bulgarian companies to produce cosmetic products. This will be followed by five presentations on the Bulgarian essential oil industry including one from the Chairman of the Bulgarian National Association for Essential Oils, Perfumery and Cosmetics. The group will stay in Plovdiv that night.

On Tuesday 30th May, participants will travel to Zelenikovo village, where they will meet local rose farmers. They will also visit Kateko Ltd and Bul Fito Oils Ltd, both of which are producers of rose concrete, absolute and various herbal extracts. After lunch, they will travel to Yasenovo for a visit to Rosa Eterna, producer of rose and lavender essential oils.

On Wednesday 31st May, participants will then travel to Pavel Banya, where participants will stay two nights. From here there will be a trip to Kazanlak, the most famous town in the Rose Valley and renowned for its 4th century BC Thracian tomb, a UNESCO World Heritage Site. On Wednesday 31st May, participants will see and become involved in the rose picking at Enio Bonchev, as well as visiting the company’s distilleries at the village of Tarnichene.

On Thursday 1st June, there will be a visit to Vigalex Ltd at Gurkovo village on Thursday 1st June, where the group will visit the local cooperative rose field as well as a private lavender field next to it. The evening will then take participants back to Sofia for a visit to Panteley Toshev, specialists in aroma flavours. A farewell dinner will be held in Sofia that night before participants depart on Friday 2nd June.

The Bulgaria Study Tour was sold out within 24 hours of registration. While IFEAT has increased the number of participants from 40 to 45, there is still a waiting list, but if you are interested in being added to this list, please do contact the secretariat.